Silicon photonics beyond silicon-on-insulator

نویسندگان

  • Jeff Chiles
  • Sasan Fathpour
چکیده

The standard platform for silicon photonics has been ridge or channel waveguides fabricated on silicon-on-insulator (SOI) wafers. SOI waveguides are so versatile and the technology built around it is so mature and popular that silicon photonics is almost regarded as synonymous with SOI photonics. However, due to several shortcomings of SOI photonics, novel platforms have been recently emerging. The shortcomings could be categorized into two sets: (a) those due to using silicon as the waveguide core material; and (b) those due to using silicon dioxide as the bottom cladding layer. Several heterogeneous platforms have been developed to address the first set of shortcomings. In such important heterogeneous integrated photonic platforms, the top silicon layer of SOI is typically replaced by a thin film of another optical material with a refractive index higher than the buried oxide (BOX) bottom cladding layer. Silicon is still usually preferred as the substrate of choice, but silicon has no optical functionality. In contrast, the second category of solutions aim at using silicon as the core waveguide material, while resolving issues related to the BOX layer. Particularly, one of the main drawbacks of SOI is that the BOX layer induces high optical loss in the mid-wavelength infrared (mid-IR) range. Accordingly, a host of platforms have been proposed, and some have been demonstrated, in which the BOX is replaced with insulating materials that have low intrinsic loss in the mid-IR. Examples are sapphire, lithium niobate, silicon nitride and air (suspended Si membrane waveguides). Although silicon is still the preferred substrate, sometimes a thin film of silicon, on which the optical waveguide is formed, is directly placed on top of another substrate (e.g., sapphire or lithium niobate). These alternative substrates act as both mechanical support and the lower cladding layer. In addition to the demands of mid-IR photonics, the non-SOI platforms can potentially offer other advantages and flexibilities. Examples are different, and sometimes interesting, guided mode properties (e.g., single-mode and single-polarization behavior), enhanced dispersion engineering (wideband anomalous regimes), as well as ease of fabrication and higher thermal conductivity in some cases. The objective of this article is to review this category of non-SOI photonic platforms that use silicon as the waveguide core layer and discuss their challenges and opportunities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low loss coupler to interface silicon waveguide and hybrid plasmonic waveguide

A metallic coupler is proposed to interface a silicon on insulator (SOI) waveguide with a narrow hybrid plasmonic waveguide (200× 200 nm). The device operation is investigated and optimized to attain the best tradeoff between the mode confinement and the propagation loss. Calculations reveal that a high confinement and low loss of the energy is achieved from a silicon slab waveguide into the di...

متن کامل

Hybrid Integrated Platforms for Silicon Photonics

A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer...

متن کامل

Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics

Silicon-on-nitride ridge waveguides are demonstrated and characterized at midand near-infrared optical wavelengths. Silicon-on-nitride thin films were achieved by bonding a silicon handling die to a silicon-on-insulator die coated with a low-stress silicon nitride layer. Subsequent removal of the silicon-on-insulator substrate results in a thin film of silicon on a nitride bottom cladding, read...

متن کامل

CMOS-Compatible Deposited Materials for Photonic Layers Integrated above Electronic Integrated Circuit

Silicon photonics has generated an increasing interest in recent years mainly for optical communications optical interconnects in microelectronic circuits or bio-sensing applications. The development of elementary passive and active components (including detectors and modulators), which are mainly fabricated on the silicon on insulator platform for CMOS-compatible fabrication, has reached such ...

متن کامل

Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics

Related Articles Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines Appl. Phys. Lett. 101, 051101 (2012) Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on siliconon-insulator platform Appl. Phys. Lett. 101, 041117 (2012) Efficient and broadband polarization rotator using horizontal slot wav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017